
Climate Data Analysis Tools

Version 3

May, 2001

Program for Climate Model Diagnosis and
Intercomparison (PCMDI) Lawrence Livermore
National Laboratory, Livermore California 94550

Legal Notice

Copyright (c) 1999, 2000. The Regents of the University of California.
All rights reserved.

Permission to use, copy, modify, and distribute this software for any pur-
pose without fee is hereby granted, provided that this entire notice is
included in all copies of any software which is or includes a copy or mod-
ification of this software and in all copies of the supporting documenta-
tion for such software.

This work was produced at the University of California, Lawrence Liver-
more National Laboratory under contract no. W-7405-ENG-48 between
the U.S. Department of Energy and The Regents of the University of Cal-
ifornia for the operation of UC LLNL.

DISCLAIMER

This software was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Gov-
ernment nor the University of California nor any of their employees,
makes any warranty, express or implied, or assumes any liability or
responsibility for the accuracy, completeness, or usefulness of any infor-
mation, apparatus, product, or process disclosed, or represents that its use
would not infringe privately-owned rights. Reference herein to any spe-
cific commercial products, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Govern-
ment or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United
States Government or the University of California, and shall not be used
for advertising or product endorsement purposes.

Table of Contents

CHAPTER 1 Getting Started With CDA T5

Introduction 5
A New Paradigm 5
The CDAT Project at SourceForge 6

Setting up CDA T7

CHAPTER 2 Basic tutorials 11

Try the Visual CDAT browser first 11
How to get the tutorials and d ata11
getting_started_tutorial.py 12
Statistics 14
Dealing with time 14
Plotting with xmgrace 14

CHAPTER 3 Learning CDAT 17

Prefer the Browser and The Tutorials 17
Python Documentation 17
CDAT Documentation 18

Using “docstrings” 18
Using the happydoc documentation 18
Using pydoc to generate documentati on18

CHAPTER 4 CDAT Core Modules 21

Data acquisition and manipulatio n21
cdms 21
cdms.MV 22
cdtime 22
regrid 22

cu and pcmd i22

Graphics 22
vcs 22

Statistical utilities 22

CHAPTER 5 Overview of arrays and
variables 25

Why all these layers ?25
Variables and arrays 26
Traversing the hierarchy 28

Constructing Numeric arrays 28
Numeric to MA 29
Numeric or MA to Transient Variable 30

CHAPTER 6 Creating New Packages 33

Adding your scienc e33

CHAPTER 7 User-contributed package s35

Connecting to Numerical Python packages 36
Package asciidata 37

Package asciidata reads data from ASCII text files. 37
Package binaryio 38

Read and write Fortran unformatted i/o files. 38
Package eof 39

Calculates Explicit Orthonormal Functions of either one variable or
two variables jointly. 39

Package lmoments 41
An interface to an L-moments library by J. R. M. Hosking. 41

Package regridpack 42
Interface to regridpack 42

Package sphere (spherepack) 43
Interface to Spherepack 43

Package trends 44

Computes variance estimate taking auto-correlation into account. 44
Package ort 45

Read data from an Oort file. 45
Package grads 46

The grads module supplies an interface to cdms that will be familiar
to users of GrADS. 46

CHAPTER 1 Getting Started With
CDAT

CDAT is an open-source, Python-based set of tools for scientific data analysis and graphics.
1.1 Introduction

1.1.1 A New Paradigm

The software you are about to use, CDAT (Climate Data Analysis Tools),
may be unlike any software you may have used before. Rather than a mono-
lithic interface with a fixed number of predetermined commands, CDAT is a
set of components that can be programmed under the direction of the user.
The set of components can be extended with additional algorithms and com-
piled code written by the user or written by other members of the commu-
nity. This kind of extension does not require the cooperation or consent of
the CDAT authors or even the recompilation of any of CDAT itself.

CDAT is based on the popular scripting language Python (http://
www.python.org). Python is easy to learn, and most importantly for our pur-
poses, easy to extend with your own compiled code and additional modules
written in Python itself. In fact, adding your own C, C++, or Fortran can be
done nearly automatically using tools that have been written for the pur-
pose. (See “User-contributed packages” on page35.)
Getting Started With CDAT 5

Getting Started With CDAT
Some of the key components supplied by PCMDI include:

• cdms, a package that enables access to many different data file for-
mats;

• cdutil, a package containing utility functions for climatology and
averaging;

• genutil, a package containing statistics functions with special fea-
tures for climate data;

• vcs, a two-dimensional graphics package.

1.1.2 The CDAT Project at SourceForge

CDAT is hosted at SourceForge, a free service provided by VA Linux,
Inc. to the Open Source Community. Using SourceForge enables us to have
many services for users:

• A release facility, where users can download binary and source
releases and see release notes.

• A bug-tracking facility, where users can submit bugs and track
their status, and receive mail when they are fixed.

• A mailing list for discussion of CDAT (cdat-discus-
sion@lists.sf.net).

You can use these facilities without registering at SourceForge, but registra-
tion, which is quick, easy, and free, will enable you to participate in the full-
est possible way. In particular, it is very helpful to us if you are registered
when you submit a bug report.

The CDAT Home Page is cdat.sf.net. That page documentation and links to
related sites. One link is to the CDAT Project Page,
sf.net/projects/c/cd/cdat. (No, we aren’t stuttering; there are so many
projects on SourceForge that they had to organize their web site this way).
The Project Page contains the bug-tracking, mail list, and download facili-
ties.
6 Getting Started with CDAT

Setting up CDAT
1.2 Setting up CDAT

Prerequisites
CDAT assumes you have three packages already installed:

1. Tcl/Tk -- distributions are available from:
http://tcl.activestate.com

2. Netcdf -- distributions are available from:
http://www.unidata.ucar.edu/packages/netcdf/

3. Motif -- A free version, LessTif, is included in our source distribu-
tion in directory cdat/Tars. You will need to edit and then execute
the make_motif shell script.
Motif is used only in the vcs package now and we hope to elimi-
nate its use entirely in the next release. The file in cdat/Packages/
vcs/setup.py is used when building from source to set the location
of the library.
On Solaris LessTif doesn’t work because needs to be compiled
with the Sun compiler and we could not get it to compile. Our
Solaris has a version in /usr/dt/lib and the setup.py file tries to find
it there.

Set your environment variable LD_LIBRARY_PATH to include the direc-
tories where these libraries are found. For your convenience we supply a
script “cdat” that gets installed into the binary directory as bin/cdat. This
script can be used to ensure that the environment is correct before executing
python. Just edit it accordingly and then execute cdat instead of python. You
may need to make similar changes to the script vcdat that starts the browser.

Using the binary distributions
CDAT is available in binary form for a number of platforms. See the

CDAT Project Page for the available downloads. It is also available in
source form. With the source form, you pick an installation directory. With
the binary form, you simply undo the tarball where desired. The top level of
the tarball will have a name like cdat-3.0.0.
Getting Started With CDAT 7

Getting Started With CDAT
Either form of CDAT can be installed anywhere on your computer. Wher-
ever you install it, it is important to do two things:

1. Put the ‘bin’ directory of the installation in your Unix search path
so that executing

where python

prints the path to the python in your CDAT installation. For exam-
ple, if you have untarred a binary into /usr/local/, you want /usr/
local/cdat-3.0.0/bin in your path, and the above command should
print “/usr/local/cdat-3.0.0/bin/python”. Depending on your OS,
you may need to issue a “rehash” command after doing this. Typi-
cally, you are going to want to fix this permanently in your startup
files.

2. Set the environment variable LD_LIBRARY_PATH to include the
directories where the netcdf library, the Motif library (libXm.a),
tcl, and tk are installed. If you do not have these, you will need to
obtain them and install them first. Usually they are placed in /usr/
local.

Using the source distributions

To build from source, unzip and untar the distribution into any directory of
your own and proceed to follow the instructions in the README file at the
top level.

A first test
Execute “python” and a prompt >>> should appear. Enter the com-

mands:

>>> import cdms
>>> import vcs

If you get back another prompt after each command, CDAT is installed cor-
rectly. You can leave python by entering “Control-D”.
8 Getting Started with CDAT

Setting up CDAT
Troubleshooting

If you get an error message about not being able to load a library such as
libnetcdf.so, it means you didn’t set LD_LIBRARY_PATH.

If python says it can’t find modules such as cdms or vcs, it means you don’t
have our python at the front of your path. Linux, for example, comes with a
python already installed so you might be running the wrong one. We have to
give you one of our own to make sure your Python version matches the one
with which we built all the CDAT components.
Getting Started With CDAT 9

Getting Started With CDAT
10 Getting Started with CDAT

CHAPTER 2 Basic tutorials

CDAT comes with a suite of tutorials to help you learn how to use it. You can get these tutorials
and sample data from our website.
2.1 Try the Visual CDAT browser first

Before you get into the tutorials, try the vcdat browser first. Execute
the script “vcdat” .

2.2 How to get the tutorials and data

The tutorials are designed to introduce you to the most common oper-
ations for climate data analysis. They are available as a Python script from
our download area under “Tutorials”. If you want to try executing these
examples, do these steps:

1. From the Tutorials area of the download facility at cdat.sf.net,
download the data files tarball and unpack it.

2. Download the tutorial files. In each tutorial you will need to edit
the line(s) near the top that sets the location of the data files to
match the location where the data will be on your system.

3. At some point during the tutorials you may wish to also read
“Overview of arrays and variables” on pa ge25 for a discussion of
Getting Started With CDAT 11

Basic tutorials
the difference between several array-like abstractions that our soft-
ware uses: numerical arrays, masked arrays, transient variables,
and file variables.

We will now describe the tutorials.

2.3 getting_started_tutorial.py

This tutorial is the first one to study. The tutorial consists of three
parts:

Example 0: the basics
• How do I open a file?

• How do I see what variables are in the file?

• How do I read a variable?

• How can I get the metadata for the variable?

• How do I get the shape (i.e length of each dimension) of the
variable?

• How do I extract a variable and rewrite it to another file?

• How do I extract data at a specific latitude/longitude from the
file?

• I do not want to retain the latitude and longitude axes since
they are single points. How do I do that?

• How do I extract a subset (or a region) from the file?

• How can I define a region of interest and reuse it without a lot
of typing?

• How do I see what the latitude and longitude values extracted
are?

• What if I need say the 2nd axis whose name I do not know?

• How do I get the exact region with the precise bounds and not
any spillover into adjoining grid cells?
12 Getting Started with CDAT

getting_started_tutorial.py
• How do I get the area averaged NINO3 values?

• How do I see what the start time in the data set is?

• How do I extract the data based on time axis values since I
know the first time point in the data?

• How do I extract a time slice with specific time start and end?

Example 1: Dealing with data from other sources
• Reading ASCII data like that written by Fortran

• “Masking” or setting a certain value as “Missing data”

• How to create an Axis

• How to set the name of the axis

• How to set the axis units.

• How to create Uniform Latitude and Longitude axes.

• How to get the Bounds.

• How to create a “variable” with all the metadata from an
array.

• What are the options for createVariable?

• How to check the shape of the variable

• How to check the metadata or decorations to the variable and
its axes.

• How to plot a variable using VCS

• How to write a variable out in a netcdf file.

• Averaging with weights over specified dimensions.

• Specifying weights.

• Generating weights.

Example 2. Masking out data using a land fraction data file.
This example opens a temperature data file and a corresponding
land fraction data file. Use the land fraction data to select land/
ocean areas from the temperature data. After masking out data use
the averaging routines to compute the area averages.
Getting Started With CDAT 13

Basic tutorials
2.4 Statistics

statistics_tutorial.py illustrates the use of the tools for calculating sta-
tistics such as covariances on climate data.

2.5 Dealing with time

Dealing with time is one of the hardest parts of dealing with climate
data files. times_tutorial.py illustrates how to use the facilities in CDAT that
make dealing with time less painful. Examples are given of:

• Compute the climatological DJF

• Calculate departures from that

• Compute the departures from the 1979-1988 period

• Using the predefined seasons:
JAN, FEB, MAR, APR,...., DEC
DJF, MAM, JJA, SON
YEAR -- returns annual means
ANNUALCYCLE -- returns monthly means for each month
of the year
SEASONALCYCLE -- returns seasonal means for the 4 pre-
defined season

• Compute the annual mean for each year

• Compute the global average for each month

2.6 Plotting with xmgrace

Nothing emphases the fact that CDAT is a collection of tools that can
be extended by the user better than the xmgrace module. This module pro-
vides an interface to the popular xmgrace utility (which you must have
installed yourself separately). One of our users, Charles Doutriaux, who
loves xmgrace, built this interface. The xmgrace tutorial will teach you how
to use it.
14 Getting Started with CDAT

Basic tutorials
The plot shown on the next page was produced with the xmgrace module tutorial (but it had to be
scaled down to fit the page).

A spreadsheet xmgrace.xls is available via the website. This spreadsheet contains detailed informa-
tion needed by xmgrace users.
15 Getting Started with CDAT

Basic tutorials

Year 1
Year 2

90S
90S60S30SEq30N

90N 60S60N 30SEq30N

-1

0

1

ar 2-1

Difference

Sa
m

pl
e

16 Getting Started with CDAT

CHAPTER 3 Learning CDAT

The best way to learn CDAT is to start with the browser, and the the tutorials. This chapter dis-
cusses the manuals and online documentation.
3.1 Prefer the Browser and The Tutorials

Don’t read this chapter until after you have tried the browser and the
tutorials.

3.2 Python Documentation

Python is documented down to the last detail at python.org and the
SourceForge website python.sourceforge.net. There are now many books
about it. We can recommend the free tutorial available at python.org in the
documentation section. The book “Learning Python” from O’Reilly Press is
another excellent resource.

CDAT makes heavy use of Numerical Python, a fast array facility for
Python. The documentation for Numerical Python is at numpy.source-
forge.net.

Although CDAT itself is not yet available on Windows or MacIntosh,
Python is. Python is even available for the Palm Pilot. You can download a
Getting Started With CDAT 17

Learning CDAT
Windows installer and even install Numerical Python on Windows (see
numpy.sourceforge.net).

You may also wish to run Python in a nicer environment than a shell. The
IDLE environment can be started by entering “idle”. Documentation for
IDLE is available via its “help” button. Many people run Python from
Emacs. Information about how to configure your editor for writing Python
code is available on the Python site.

3.3 CDAT Documentation

The CDAT website cdat.sf.net is your source for documentation, both
online and printable.

3.3.1 Using “docstrings”

Python also has a powerful feature: most objects in Python, including the
modules, classes, and functions, have documentation strings (“docstrings”)
attached to them. The special attribute name “__doc__” (which has two
underscores on each end) is used to access this string supplied by the mod-
ule author. If you have an object x, try the command

print x.__doc__

3.3.2 Using the happydoc documentation

A utility named “happydoc” is able to generate documentation for
modules written in Python. We have used this utility and you will find the
resulting documentation on the website. It is very extensive.

3.3.3 Using pydoc to generate documentation

You can also use the pydoc utility. This is a standard facility for extracting
documentation from Python installations.
18 Getting Started with CDAT

CDAT Documentation
You can generate Python documentation in HTML or text for interactive
use.

Interactive use

In the Python interpreter, do "from pydoc import help" to provide online
help. Calling help(thing) on a Python object documents the object.

From the shell

At the shell command line outside of Python: Run "pydoc <name>" to show
documentation on something. <name> may be the name of a function, mod-
ule, package, or a dotted reference to a class or function within a module or
module in a package. If the argument contains a path segment delimiter
(e.g. slash on Unix, backslash on Windows) it is treated as the path to a
Python source file. Run "pydoc -k <keyword>" to search for a keyword in
the synopsis lines of all available modules.

Starting a browser / server

pydoc -g starts an HTTP server and also pops up a little window for control-
ling it.

Writing out HTML

Run "pydoc -w <name>" to write out the HTML documentation for a mod-
ule to a file named "<name>.html".
Getting Started With CDAT 19

Learning CDAT
20 Getting Started with CDAT

CHAPTER 4 CDAT Core Modules

CDAT comes with a number of modules. This chapter introduces the core modules, and then
gives a conceptual overview of the different kinds of variables and arrays.
4.1 Data acquisition and manipulation

4.1.1 cdms

The principal module used to read, write, and manipulate data is
cdms. This module is documented in a large manual available at the CDAT
website. Using cdms, you can read and write data, extract portions of data,
and compute using that data.

cdms contains a subpackage MV which is generally used for most mathe-
matical operations on cdms-acquired data. For example, to take the square
root of a variable, you do:

from cdms import MV
y = MV.sqrt(x)

This module also contains the basic “selector” mechanism that is used to
extract subsets of data. To select by region, such as Northern Hemisphere,
see “Statistical utilities” on page 22.
Getting Started With CDAT 21

CDAT Core Modules
4.1.2 cdms.MV

MV (Masked Variable) is a subpackage of cdms that contains the
same mathematical functions found in Numerical Python (Numeric) and the
masked array package (MA), specialized to work with cdms variables.

4.1.3 cdtime

Module cdtime contains facilities for specifying times.

4.1.4 regrid

Module regrid helps evaluate a dataset onto a different grid.

4.1.5 cu and pcmdi

Modules cu and pcmdi are obsolete. They are provided for compati-
bility with CDAT 2.4. Module pcmdi may also contain utilities used only at
PCMDI for processing received data sets.

4.2 Graphics

4.2.1 vcs

Graphics are created by creating a vcs Canvas object using the canvas
= vcs.init() function call. Then many different kinds of plots can be created
by making calls on that canvas, such as canvas.plot (v), where v is a cdms
variable.

4.3 Statistical utilities

Packages genutil and cdutil contain utilities for manipulating climate
data, such as finding averages, computing climatologies, and extracting data
based on time. There are also special selectors defined for easily selecting
22 Getting Started with CDAT

Statistical utilities
data by region, such as the Northern Hemisphere. See the tutorials for les-
sons on using them.
Getting Started With CDAT 23

CDAT Core Modules
24 Getting Started with CDAT

Why all these layers?
CHAPTER 5 Overview of
arrays and
variables

5.1 Why all these layers?

Climate data comes in many different file formats, organized in many
different ways. The cdms package gives you a uniform interface so that you
can write processing algorithms and graphics that will work with a wide
variety of different data formats, not just the kind you first wrote for.

In order to deal honestly with this kind of data, we could have simply
invented a “variable” object that contains all the information a climate vari-
able might be associated with. This information includes axis information,
informational quantities such as units or where the data came from, etc.
However, this approach results in isolation. The other parts of our software,
such as graphics, become unusable unless you have a “variable”. If you
have calculated some data in some other way, there may be a considerable
effort required to “make it into a variable”. Likewise, other Python-based
facilities do not know about our “variables” and therefore cannot be easily
used from our software, and our software becomes clumsy to use for non-
climate data.

Therefore, we opted for interoperability with the rest of the world at the cost
of some extra layers of abstraction. In the rest of this section, we will
explain these abstractions. Figure 1, “Relationships between array abstrac-
tions and functions,” on page26, shows some of the relationships we will
discuss.
Getting Started With CDAT 25

Overview of arrays and variables
FIGURE 1. Relationships between array abstractions and functions

5.2 Variables and arrays

Datasets consist of one or more files; these files contain variables of vari-
ous sorts. How the variables are organized within the files becomes irrele-
vant to a cdms-based program. You might have one file containing all the
data, many files each containing one variable, or many files each containing
a portion of one or more variables -- but to cdms, the dataset simply is
something we can open and variables are arrays that we can get from the
dataset. When we do processing on the variables, we produce arrays that
exist in memory but not in a file. We call these “transient variables” to dis-
tinguish them from the permanent kind that are in datasets. If necessary, we

F ileVariab le

Arithmetic, MV
functions, using
function call nota-
tion on a variable,
indexing, or
explicit calls such
as getRegion,
getSlice.

Masked ArrayTransient
Variable

Function call
notation, or
explicit calls
such as
getRegion,
getSlice

Numeric
Array

MV functions

MA.filled

To external software

MA
functions

Numeric
functions
26 Getting Started with CDAT

Variables and arrays
sometimes say “file variable” to emphasize that a variable is not transient,
although we are playing a little fast and loose with language when we do so,
in that such a variable might not be contained in just one file.

Variables have a domain; for arrays on an orthogonal grid, the domain con-

sists of a list of axes. Conceptually, the ith axis is a one-dimensional array of
values the variable v’s value at a given set of indices represents the value at
the point in space obtained by indexing each axis with its corresponding
index value. (Variables that represent quantities on non-orthoganal grids are
currently being added to CDAT).

Almost any kind of operation on a file variable, a transient variable, or a
combination of the two, will result in a transient variable.

Any variable, transient or not, thus consists of two parts:

• the actual data array

• metadata, information that helps us interpret what the data means,
such as its domain, name-value pairs we call attributes, and some
information about whether which, if any, data locations are invalid
or missing data.

In order to facilitate interoperability with other Python modules, we want to
represent the data in a variable with an array from the Numeric module, the
standard extension to Python used for scientific data.

Numeric arrays have no concept of a missing value; to represent that, we
use an array from the MA (masked array) package. If we need to convert a
masked array to a Numeric array, MA.filled or the filled method can be used
to produce a Numeric array with the missing values replaced by a value we
choose, for example, 1.e20.

MA arrays have no concept of a domain or attributes. Since it is both possi-
ble and convenient to carry such information through some operations, we
have a third layer of abstraction, the variable. In our software, a transient
variable (but not a file variable) is an MA too -- we use an object-oriented
Getting Started With CDAT 27

Overview of arrays and variables
concept called inheritance. This means a transient variable can be used in
any context in which an MA is expected.

A special submodule, MV, of cdms, is provided to supply the same set of
functions that MA and Numeric provide, such as sqrt, transpose, and aver-
age. The function in MV return transient variables.

For example, if x is a transient variable, cdms.MV.average(x,axis=1) would
average the values of x over its axis that has index 1 (the second one). The
resulting MV would have the same domain as x but with the second axis
removed.

The benefit of this approach is that, for example, if we average over time,
and then plot the result, the plotting routines can still be aware that the other
dimensions represent latitude and longitude and draw the continental out-
lines, do projections correctly, etc. If the result were merely the averaged
data, that interpretation of it would have been lost.

5.3 Traversing the hierarchy

In increasing order of complexity, then, we have Numeric arrays as
the simplist, MAs next, and then variables, which are available in two fla-
vors, file and transient. What follows is a “cookbook” of how to get from
one abstraction to the next and back again. See Figur e1 on page26.

5.3.1 Constructing Numeric arrays

As explained in the Numeric Python manual, a Numeric array can be con-
structed in many ways. The basic usage is to apply the array “constructor”
Numeric.array:

x = Numeric.array (s)

where s can be a Python list, tuple, or another Numeric array. If you do not
require a separate copy of the data, copy=0 can be added. If you want to
control the type of the data, you can supply a typecode, usually in the form
28 Getting Started with CDAT

Traversing the hierarchy
of one of the abstract constants supplied in Numeric for this purpose. For
example,

y = Numeric.array([1,2,3], Numeric.Float)

would create y as an array containing the floating-point numbers 1., 2., and
3. By the way, a very frequent beginner error is to say something like:

y = Numeric.array(1,2,3) # Error !

which is an error that will result in a very strange message:

>>> import Numeric
>>> y = Numeric.array(1,2,3)
Traceback (most recent call last):
 File "<pyshell#1>", line 1, in ?
 y = Numeric.array(1,2,3)
TypeError: typecode argument must be a string.
>>>

What has happened is that the second argument to Numeric.array was the
number 2, and Numeric is expecting one of its typecode letters such as ‘d’
in that position.

5.3.2 Numeric to MA

Given a Numeric array x, if we wish to construct a masked array, it will be
one of these cases:

1. We want to treat x as a masked array xm, but none of its values are
currently missing, and we are wish to share x’s data space, so that
a modification to xm is also a modification to x.

Solution: xm = MA.masked_array (x) or
 xm = MA.array (x, copy=0)

2. We want to treat x as a masked array xm with no values considered
missing and without sharing x’s space.

Solution: xm = MA.array (x)
Getting Started With CDAT 29

Overview of arrays and variables
3. We want to treat x as a masked array xm with a certain value v
treated as a missing value.

Solution: xm = MA.masked_value (x, v). See the MA manual for
other arguments, such as controlling the precision with which a
value in x must be equal to v in order to be considered missing.

4. We want to treat x as a masked array xm but with those values
considered missing that correspond to non-zero values in an array
m of zeros and ones.

Solution: xm = MA.array(x, mask=m). Again, see the manual for
more options on this constructor.

5. The array x is of a numeric type and we want to mask all those val-
ues greater than a certain value v.

Solution: xm = MA.masked_greater (x, v). Similarly, there are
functions masked_greater_equal, masked_less,
masked_less_equal, masked_equal.

5.3.3 Numeric or MA to Transient Variable

The array constructor cdms.MV.array is similar to the MA.array constructor
but allows additional arguments specifying the metadata. For full usage, see
the CDMS manual. The options discussed in the previous section will pro-
duce transient variables as long as you use the functions in cdms.MV
instead of those in MA.

The most frequent additional argument to cdms.MV.array is to specify a list
of axes using the axes=alist argument. Often these axes have been extracted
from another variable using getAxis or getAxisList, or created from data.

For example, if you were going to massage variable v using some process
that returns a Numeric array, and in the process remove its time dimension,
you might do something like this:

>>> f=cdms.open('/home/dubois/clt.nc')
>>> v=f['clt']
30 Getting Started with CDAT

Traversing the hierarchy
>>> alist = v.getAxisList(omit='time')
>>> u = massage(w)
>>> x = cdms.MV.array(u, axes=alist)

Now, x is again a transient variable and it has the geographic information
reattached so that plots will show the continents.

Note that it is usually not necessary to do this. Any ordinary arithmetic, and
any use of the functions in MV, will return transient variables with appropri-
ate axes.
Getting Started With CDAT 31

Overview of arrays and variables
32 Getting Started with CDAT

CHAPTER 6 Creating New Packages

CDAT is a collaboration. You can be part of the collaboration. You don’t need permission. You
don’t need PCMDI’s approval. You don’t need PCMDI’s programmers to add your algorithms. Just do
it.
6.1 Adding your science

One of CDAT’s strengths is that it is an open system. You can add your own
software written in C, Python, or Fortran. The easiest way to learn to do this
is to copy our examples. Get the CDAT source distribution and look for sub-
directory ‘contrib’ in the top-level directory. The README file in contrib
explains what to do.

There are tools that may be useful to you.

• The SWIG utility (Simplified Wrapper and Interface Generator,
www.swig.org) can wrap C and C++ routines.

• Pyfort (pyfortran.sourceforge.net) connects Fortran routines to
Python.

Depending on your needs, you may wish to use a layer of Python along with
the automatically created interface, in order to make a nicer interface or to
use the Fortran or C simply as computational engines. An example of this is
the EOF package described below: it uses a Fortran linear algebra routine to
enhance performance, but the “science” is in Python.
Getting Started With CDAT 33

Creating New Packages
If you follow the protocols in ‘contrib’ then your package can be added to
the PCMDI distribution as well. Just send it to us and be sure to include a
README that explains:

• How to use the package

• Contact information about the author.

You may also be able to generate useful documentation by executing the
routines happydoc or pydoc. happydoc works only on Python code; pydoc
works on the installed modules. Both routines print help packages if exe-
cuted with the argument, ‘--help’, and both are already installed in your cdat
‘bin’ directory.
34 Getting Started with CDAT

CHAPTER 7 User-contributed
packages

Here are descriptions of the packages contributed to the “contrib” section of the CDAT source.
If you have the source distribution, use the README files in the subdirec-
tories of the contrib directory for full documentation. Try running pydoc -w
with the name of the package as an argument to create a web page showing
the package’s interface.

Due to the very nature of the user-contributed packages, the following list
of available packages and their exact capabilities may be incomplete or
inaccurate. PCMDI does not maintain all of these packages, and is not
responsible for fixing bugs in them -- please contact the author.
Getting Started With CDAT 35

User-contributed packages
7.1 Connecting to Numerical Python packages

Many packages that support Numerical Python arrays have been
developed. You can find links to some of them on the CDAT website.

These packages work with Numerical Python arrays. Since the data
obtained from files in CDAT can be converted to Numerical Python arrays,
you can pass arguments from CDAT to these routines.

The one problem to consider is that of missing data. Numerical Python
arrays do not have the concept of missing values. Therefore, you must con-
vert your CDAT quantities to Numerical arrays. An attempt is usually made
to do this automatically but it will fail if there are missing values.

To convert an MV (masked array or transient cmds variable) to a Numeric
array, you can use the filled method or function:

from cdms import MV
x = ...some data...
numeric_array = MV.filled (x)
#or
numeric_array = x.filled()

The difference is that the first form will work whether x is a Numeric array,
list, masked array, or transient variable, while the latter only works for tran-
sient variables and masked arrays. Both forms can take an additional argu-
ment fill_value specifying the value to use to replace any missing values; if
you don’t give it a default value for that array’s type is used.

One useful package, Konrad Hinsen’s Scientific Python, is included in your
CDAT documentation. The documentation for it is available via a link from
the CDAT website.
36 Getting Started with CDAT

Connecting to Numerical Python packages
Package asciidata

Author: Paul Dubois (dubois1@llnl.gov)

Summary: Package asciidata reads data from ASCII text files.

Reads text files written by such programs as spreadsheets, in which data has
been written as comma, tab, or space-separated numbers with a header line
that names the fields. Using the functions in asciidata, you can convert these
columns into Numerical arrays, with control over the type/precision of these
arrays.

Example
import asciidata
time, pressure = asciidata.comma_separated(‘myfile.csv’)

Documentation: pydoc -w asciidata

Scientific Python also contains a subpackage IO that contains other useful
facilities of this type. In particular there is a useful package for reading For-
tran-like formatted output.
Getting Started With CDAT 37

User-contributed packages
Package binaryio

Author: Paul F. Dubois

Summary: Read and write Fortran unformatted i/o files.

These are the files that you read and write in Fortran with statements like
read(7) or write(7). Such files have an unspecified format and are platform
and compiler dependent. They are NOT portable. Contrary to popular opin-
ion, they are NOT standard. The standard only specifies their existence and
behavior, not the details of their implementation, and since there is no one
obvious implementation, Fortran compilers do vary. We suggest writing
netcdf files instead, using the facilities in cdms.

Documentation: pydoc -w binaryio. A similar package is in Scientific
Python.

Usage summary:
 binaryio: Fortran unformatted io
 Uses Fortran wrapper module "binout"
 Usage:
 from binaryio import *
 iunit = bincreate('filename')
 binwrite(iunit, some_array) (up to 4 dimensions)
 binclose(iunit)
 iunit = binopen('filename')
 y = binread(iunit, n, ...) (1-4 dimensions)
 binclose(iunit)

Note that reads and writes must be paired exactly. Errors will cause a For-
tran STOP that cannot be recovered from. You must know (or have written
earlier in the file) the sizes of each array.

All data is stored as 32-bit floats.
38 Getting Started with CDAT

Connecting to Numerical Python packages
Package eof

Author: Paul Dubois (dubois1@llnl.gov) based on work by Ken Sperber
and Ben Santer.

Summary: Calculates Explicit Orthonormal Functions of either one variable
or two variables jointly.

Having selected some data, the key call is to create an instance of eof.Eof
giving one or two arguments. In this example, a portion of the variable ‘u’ is
analyzed. After the result is returned, it is an object with attributes contain-
ing such things as the principal components and the percent of variance
explained. Optional arguments are available for controlling the subtraction
of the mean from the data, the weighting by latitude, and the number of
components to compute.

This routine is computationally efficient, solving the problem in either the
normal space or the dual space in order to minimize computations. None-
theless, it is possible that this routine will require substantial time and space
if used on a large amount of data. This cost is determined by the smaller of
the number of time points and the total number of space points.

Documentation: pydoc -w eof.Eof

Example
import cdms, vcs
from eof import Eof

f=cdms.open('/home/dubois/clt.nc')
u = f(‘u’, latitude=(-20,40), longitude=(60, 120))
result = Eof(u)
principal_components = result.principal_components
print "Percent explained", result.percent_explained
x=vcs.init()
vcs.pauser.pause(3)
print len(principal_components)
Getting Started With CDAT 39

User-contributed packages
for y in principal_components:
 x.isofill(y)
 x.clear()
u1 = v.subRegion(latitude=(amr[0], amr[1], 'cc'),
 longitude=(amr[2],amr[3],'cc'), order='xyt')
result2 = Eof(u, number_of_components=4,
mean_choice=12)
print "Percent explained", result.percent_explained
40 Getting Started with CDAT

Connecting to Numerical Python packages
Package lmoments

Author: Michael Werner

Summary: An interface to an L-moments library by J. R. M. Hosking.

This package is an interface to a Fortran library. The calling sequence from
Python differs from the Fortran convention. In general, output and tempo-
rary arguments are not supplied in making the Python call, and output argu-
ments are returned as values of the function.

Documentation: pydoc -w lmoments to see list of functions. pydoc -w lmo-
ments.pelexp, or other function name, for the particular. See also documen-
tation for Pyfort at pyfortran.sourceforge.net for further details on argument
conventions. If built from source, a file flmoments.txt appears which gives
the Python calling sequences.
Getting Started With CDAT 41

User-contributed packages
Package regridpack

Author: Clyde Dease

Summary: Interface to regridpack

Documentation: This package contains a Python interface to the subroutine
library regridpack.

pydoc -w adamsregrid Documentation online at cdat.sourceforge.net. See
also documentation for Pyfort at pyfortran.sourceforge.net for further
details on argument conventions.
42 Getting Started with CDAT

Connecting to Numerical Python packages
Package sphere (spherepack)

Author: Clyde Dease

Summary: Interface to Spherepack

Documentation: This package contains a Python interface to the subroutine
library Spherepack.

pydoc -w sphere to see list of functions. Documentation online at
cdat.sourceforge.net. See also documentation for Pyfort at pyfortran.source-
forge.net for further details on argument conventions.
Getting Started With CDAT 43

User-contributed packages
Package trends

Author: Pyfort wrapping by Paul Dubois of a routine by Ben Santer

Summary: Computes variance estimate taking auto-correlation into account.

Documentation:

import reg_arl from trends
rneff, result, res, cxx, rxx = reg_arl (lag, x, y)
 integer lag Max lag for autocorrelations.
 real x(n1) Independent variable
 real y(n1) Dependent variable
 real, intent(out):: rneff !Effective sample size
 real, intent(out):: result(31) !Array of linear regression
results
 real, intent(out):: res(n1) !Residuals from linear regres-
sion
 real, intent(out):: cxx(1 + lag) !Autocovariance function
 real, intent(out):: rxx(1 + lag) !Autocorrelation function
44 Getting Started with CDAT

Connecting to Numerical Python packages
Package ort

Author: Curt Covey

Summary: Read data from an Oort file.

Documentation: Module ort contains one Fortran function, read1f:

Calling sequence:
import ort
lon, lat, data, nr = ort.read1f(filename, maxsta, nvarbs,
 nlevels)

Input:
 character*(*) filename ! name of the file to be read
! max number of stations (soundings) possible
 integer maxsta
! number of variables and P-levels in each sounding
 integer nvarbs, nlevels

Output:
 ! longitudes / latitudes of the stations
 real, intent(out):: lon(maxsta), lat(maxsta)
! sounding data
 real , intent(out):: data(nvarbs, nlevels, maxsta)
 ! actual number of stations with data
 integer , intent(out):: nr
Getting Started With CDAT 45

User-contributed packages
Package grads

Author: Mike Fiorino

Summary: The grads module supplies an interface to cdms that will be
familiar to users of GrADS.

Documentation: See the CDAT website for documentation.
46 Getting Started with CDAT

Index

A
annual cycle, computing 14
annual mean, computing 14
arrays 26
asciidata (package) 36
averages 22

B
binaryio (package) 38
bug-tracking 6
bug-tracking facility 6

C
CDAT Home Page 6
CDAT Project Page 6
CDAT Website 6
cdat, script 7
cdms 6
cdtime 22
cdutil 6
climatology 22
climatology, computing 14
correlation 22
cu 22

D
data, conversion to Numeric 36
data, Fortran binary 38
data, Oort 45
data, reading ASCII 37
departures 14
documentation 18
documentation, run-time 34
download 6

E
editing Python scripts 18
Empirical Orthonormal Functions (EOF) 39

eof (package) 39

F
file, opening 12
filled 36
Fortran-like I/O 38

G
genutil 6
global average, computing 14
grads (GrADS-like interface) 46
grads (module) 46

H
happydoc 34

I
IDLE 18
installation 7

L
LD_LIBRARY_PATH 7, 8, 9
Learning Python 17
lmoments 41

M
MA 22, 26
mailing list 6
masked arrays 26
masking 13
mean 22
metadata 12
missing values 26, 36
Motif 7
MV 22, 26, 36

N
netcdf 7
Northern Hemisphere 23
Numeric 26
Numerical Python 17, 36

O
Oort data 45
ort (package) 45

P
path, setting your 8
pcmdi (module) 22
platforms 17
principal component analysis 39
pydoc 18, 34
Pyfort 42
Python website 5

R
reading files written by Fortran 38
region 23
regridpack (package) 42

S
Scientific Python 38
Scientific Python, 36
seasonal cycle, computing 14
shape 12
Solaris 7
SourceForge 6
sphere (package) 43
spherepack module 43
statistics 14, 22

T
time 14
trends (package) 44
troubleshooting 9
tutorials 11

V
variables 12, 26
variance 22
variance w/auto-correlation 44
vcdat, script 7
vcs 6

W
writing Fortran unformatted files 38

	Climate Data Analysis Tools Version 3
	Table of Contents
	CHAPTER 1 Getting Started With CDAT
	1.1 Introduction
	1.1.1 A New Paradigm
	1.1.2 The CDAT Project at SourceForge

	1.2 Setting up CDAT

	CHAPTER 2 Basic tutorials
	2.1 Try the Visual CDAT browser first
	2.2 How to get the tutorials and data
	2.3 getting_started_tutorial.py
	2.4 Statistics
	2.5 Dealing with time
	2.6 Plotting with xmgrace

	CHAPTER 3 Learning CDAT
	3.1 Prefer the Browser and The Tutorials
	3.2 Python Documentation
	3.3 CDAT Documentation
	3.3.1 Using “docstrings”
	3.3.2 Using the happydoc documentation
	3.3.3 Using pydoc to generate documentation

	CHAPTER 4 CDAT Core Modules
	4.1 Data acquisition and manipulation
	4.1.1 cdms
	4.1.2 cdms.MV
	4.1.3 cdtime
	4.1.4 regrid
	4.1.5 cu and pcmdi

	4.2 Graphics
	4.2.1 vcs

	4.3 Statistical utilities

	CHAPTER 5 Overview of arrays and variables
	5.1 Why all these layers?
	5.2 Variables and arrays
	5.3 Traversing the hierarchy
	5.3.1 Constructing Numeric arrays
	5.3.2 Numeric to MA
	5.3.3 Numeric or MA to Transient Variable

	CHAPTER 6 Creating New Packages
	6.1 Adding your science

	CHAPTER 7 User-contributed packages
	7.1 Connecting to Numerical Python packages
	Package asciidata
	Summary: Package asciidata reads data from ASCII text files.

	Package binaryio
	Summary: Read and write Fortran unformatted i/o files.

	Package eof
	Summary: Calculates Explicit Orthonormal Functions of either one variable or two variables jointly.

	Package lmoments
	Summary: An interface to an L-moments library by J. R. M. Hosking.

	Package regridpack
	Summary: Interface to regridpack

	Package sphere (spherepack)
	Summary: Interface to Spherepack

	Package trends
	Summary: Computes variance estimate taking auto-correlation into account.

	Package ort
	Summary: Read data from an Oort file.

	Package grads
	Summary: The grads module supplies an interface to cdms that will be familiar to users of GrADS.

	Index

